Solid acid proton conductors: from laboratory curiosities to fuel cell electrolytes.
نویسندگان
چکیده
The compound CsH2PO4 has emerged as a viable electrolyte for intermediate temperature (200-300 degrees C) fuel cells. In order to settle the question of the high temperature behavior of this material, conductivity measurements were performed by two-point AC impedance spectroscopy under humidified conditions (p[H2O] = 0.4 atm). A transition to a stable, high conductivity phase was observed at 230 degrees C, with the conductivity rising to a value of 2.2 x 10(-2) S cm(-1) at 240 degrees C and the activation energy of proton transport dropping to 0.42 eV. In the absence of active humidification, dehydration of CsH2PO4 does indeed occur, but, in contradiction to some suggestions in the literature, the dehydration process is not responsible for the high conductivity at this temperature. Electrochemical characterization by galvanostatic current interrupt (GCI) methods and three-point AC impedance spectroscopy (under uniform, humidified gases) of CsH2PO4 based fuel cells, in which a composite mixture of the electrolyte, Pt supported on carbon, Pt black and carbon black served as the electrodes, showed that the overpotential for hydrogen electrooxidation was virtually immeasurable. The overpotential for oxygen electroreduction, however, was found to be on the order of 100 mV at 100 mA cm(-2). Thus, for fuel cells in which the supported electrolyte membrane was only 25 microm in thickness and in which a peak power density of 415 mW cm(-2) was achieved, the majority of the overpotential was found to be due to the slow rate of oxygen electrocatalysis. While the much faster kinetics at the anode over those at the cathode are not surprising, the result indicates that enhancing power output beyond the present levels will require improving cathode properties rather than further lowering the electrolyte thickness. In addition to the characterization of the transport and electrochemical properties of CsH2PO4, a discussion of the entropy of the superprotonic transition and the implications for proton transport is presented.
منابع مشابه
Study on Zinc Oxide-Based Electrolytes in Low-Temperature Solid Oxide Fuel Cells
Semiconducting-ionic conductors have been recently described as excellent electrolyte membranes for low-temperature operation solid oxide fuel cells (LT-SOFCs). In the present work, two new functional materials based on zinc oxide (ZnO)-a legacy material in semiconductors but exceptionally novel to solid state ionics-are developed as membranes in SOFCs for the first time. The proposed ZnO and Z...
متن کاملProton-conducting Oxides
■ Abstract The structural and chemical parameters determining the formation and mobility of protonic defects in oxides are discussed, and the paramount role of high-molar volume, coordination numbers, and symmetry are emphasized. Symmetry also relates to the structural and chemical matching of the acceptor dopant. Y-doped BaZrO 3-based oxides are demonstrated to combine high stability with high...
متن کاملAn overview of organic/inorganic membranes based on sulfonated poly ether ether ketone for application in proton exchange membrane fuel cells
Nowadays, proton exchange membrane fuel cells (PEMFCs) are the most promising green energy conversion devices for portable and stationary applications. Traditionally, these devices were based onperfluoro-sulfonic acid electrolytes membranes, given the commercial name Nafion. Nafion is the mostused electrolyte membrane till now; because of its high electrochemical properties su...
متن کاملHigh-performance solid Acid fuel cells through humidity stabilization.
Although they hold the promise of clean energy, state-of-the-art fuel cells based on polymer electrolyte membrane fuel cells are inoperable above 100 degrees C, require cumbersome humidification systems, and suffer from fuel permeation. These difficulties all arise from the hydrated nature of the electrolyte. In contrast, "solid acids" exhibit anhydrous proton transport and high-temperature sta...
متن کاملChemically Stable Proton Conducting Doped BaCeO3 -No More Fear to SOFC Wastes
Development of chemically stable proton conductors for solid oxide fuel cells (SOFCs) will solve several issues, including cost associated with expensive inter-connectors, and long-term durability. Best known Y-doped BaCeO3 (YBC) proton conductors-based SOFCs suffer from chemical stability under SOFC by-products including CO2 and H2O. Here, for the first time, we report novel perovskite-type Ba...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Faraday discussions
دوره 134 شماره
صفحات -
تاریخ انتشار 2007